Analytical Investigation on the Dynamic Behavior of Multi-Span Continuous Beams Supported on Soil with Finite Depth

Author:

Li Da1ORCID,Yang Hang1,Ma Jianjun12ORCID,Wang Ju1,Wang Chaosheng12,Guo Ying1ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471023, China

2. Henan Construction Safety and Protection Engineering Technology Research Center, Luoyang 471023, China

Abstract

This paper investigates the influence of soil with finite depth on the vibrational behavior of a multi-span continuous beam resting on an elastic foundation. The simplified model of the Timoshenko beam supported on soil with finite depth is established, introducing the foundation displacement decay function. The numerical solution of the continuous beam’s vibration response on the elastic foundation is obtained by using the transfer matrix method (TMM) and fourth-order Runge-Kutta method (RK4). Taking a two-span continuous beam as an illustrative example, the validity of the calculation theory is validated by comparing it with the outcomes obtained from the finite element method (FEM). Utilizing numerical computation and parametric analysis, the vibration response of continuous beams is evaluated in terms of its influence by various factors such as soil thickness, viscous damping coefficient of the soil, subgrade reaction coefficient, and span ratio. The findings indicate that the inertial motion of the soil with a finite depth significantly reduces the continuous beam’s inherent frequency and enhances the structure’s resonance effect. The rise of the subgrade response coefficient increases the system’s resonant frequency while decreasing the displacement response amplitude. The ratio between the adjacent spans determines the effect of beam span vibration energy transfer to adjacent spans. In addition, compared with the span directly excited by a concentrated harmonic load, the impact of soil thickness, subgrade reaction coefficient, and viscous damping, the coefficient of the soil is more significant on the indirect influence span of a continuous beam.

Funder

the National Natural Science Foundation of China

the National Key R&D Project: Research and Development of Intelligent Interconnected Equipment Network Collaborative Manufacturing/Operation and Maintenance Integration Technology and Platform

the National Key R&D Project: Theory and Method of Underground Space Development and Construction

the Key R&D and Promotion Special Project in Henan Province-Science and Technology Research (joint fund) Project

Publisher

MDPI AG

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3