Influence of a Precursor Film with a Copper Gradient on the Properties of a Copper Indium Gallium Selenide Solar Cell

Author:

Liu Yuandong,Li Yangzheng,Tang JunleiORCID,Zhang Wenfeng,Lin Bing

Abstract

A precursor film with a Cu gradient was prepared in order to improve the quality of the absorber film produced by sputtering CIGS targets when using glass substrates. Two ceramic quaternary targets with different copper content were used for alternatively sputtering to get a bi-layer precursor film with a Cu gradient; meanwhile, the crystallization property and cell performance were studied. This was done in order to study the activities of the Cu element in the precursor layer before and after selenization. The film states of the temperature-rise period and high temperature selenization period were investigated. The appropriate structure of the precursor film was the Cu-rich layer underneath the Cu-poor layer. The Cu–Se phase, which is important for the crystalline property, can be produced in the Cu-rich layer under the heating period. The Cu-poor layer on the top reacts with the Cu-Se compound in the annealing process at a high temperature, and the big grain size of the absorber layer can be obtained due to Cu diffusion promoted by the gradient in the precursor film, as well as better conversion efficiency. This result shows that constructing the precursor film with a Cu gradient by sputtering different quaternary CIGS targets is a very promising fabrication method to obtain high-performance solar-cell devices with a good crystallization property under an annealing temperature of 550 °C and is suitable for further industrialized application.

Funder

Program of Science and Technology Department of Sichuan Province

Southwest Petroleum University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3