Effects of Nano-Diamond-Coated Milling Bits on Cutting Dental Zirconia

Author:

Ding Hao1ORCID,Pan Zeqian1,Loh Yee Man2ORCID,Wang Chunjin2ORCID,Tsoi James Kit Hon1ORCID

Affiliation:

1. Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China

2. State Key Laboratory of Ultra-Precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Abstract

Hard alloy end mills are commonly employed for milling zirconia prostheses in dentistry. Nano-diamond-coated milling bits ensure high processing efficiency, accuracy, extended tool life, and reduced processing costs. This study aims at comparing various effects of cutting dental zirconia with nano-diamond-coated and ordinary milling bits. Two types of milling bits, one with nano-diamond coating and one without, were used to cut the dental zirconia green blanks (Ø98.5 mm, thickness: 25 mm) at three different speeds (1000, 1500, and 2000 rpm) in a dental milling machine. The unsintered and sintered zirconia surfaces were evaluated with glossmeter, optical profilometer for surface roughness, SEM, and EDX. The glossiness of the sintered zirconia block was statistically higher than that of the unsintered block (p < 0.05). For sintered zirconia, the nano-diamond-coated milling bit yielded a statistically (p < 0.05) higher glossiness in all spindle speeds than uncoated, save for the uncoated milling bit used at 1500 rpm. However, in terms of roughness, only sintering showed to be a statistically significant factor (p < 0.001) outweighing other two factors, and sintered zirconia always yielded lower surface roughness than the unsintered counterpart. Overall, the nano-diamond-coated milling bit can be operated at various speeds, resulting in a higher gloss on the sintered zirconia block, while an ordinary, uncoated milling bit can only achieve the same glossiness at a designated speed. The type of milling bits and the speeds have no significant effect on the surface roughness.

Funder

Research Grants Council, Hong Kong

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3