Thickness Distribution Measurement for Spin-Coated and Inkjet-Printed Transparent Organic Layers Using a UV Light Extinction Image Method

Author:

Yu Jun Ho1ORCID,Kim Hyung Tae1ORCID,Lee Dal Won2ORCID,Yun Gyu-Young2,Lee Seong Woo3,Kong Jong Hwan3,Hwang Jun Young1ORCID

Affiliation:

1. Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea

2. Production Engineering Research Institute, LG Electronics, Pyeongtaek 17709, Republic of Korea

3. Poongsan System Co., Ltd., Gunpo 15881, Republic of Korea

Abstract

Organic thin layers are highlighted as crucial components of flexible and printed electronic products due to their ability to provide mechanical flexibility in various applications, such as flexible displays and wearable electronics. The thickness and uniformity of these layers are crucial factors that influence surface planarization, mechanical stress relief, and the enhancement of optical performance. Therefore, accurate measurement of their thickness distribution is essential. In this study, the two-dimensional thickness distributions of spin-coated and inkjet-printed organic microlayers on glass substrates were measured using a light extinction image method. Using a 300 nm wavelength light source and a camera, images with an area of 4872 × 3640 μm2 and an XY resolution of 3.5 μm were obtained through single measurements. The precision of the measured thickness could be enhanced to several nanometers through pixel binning and image overlaying. Using this light extinction measurement system, we measured and analyzed the thickness distribution of the center and edge of the spin-coated and inkjet-printed organic layers with thicknesses of several micrometers.

Funder

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3