A Study on the High-Temperature Molten Salt Corrosion Resistance of Hot-Dip Aluminum/Carburizing Composite Coating on Ti65 Titanium Alloy

Author:

Wang Jiayi1,Li Faguo1ORCID

Affiliation:

1. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China

Abstract

This article presents a new method for preparing a coating on Ti65 titanium alloy using a two-step procedure comprising hot-dipped aluminum and solid carburization. The effects of the carburization on the hot-dipped aluminum coating against the presence of a NaCl deposit at 810 °C were systematically studied. In this article, the microstructure, morphology, phase composition of the coating, and corrosion products were investigated using SEM (Scanning Electron Microscopy), EDS (Energy Dispersive Spectrometer), and X-ray diffraction. The results indicated that the corrosion resistance of the hot-dip aluminum/carburizing composite coating was not significantly enhanced with the hot-dip aluminum coating. This can be attributed to the formation of TiC and Ti3AlC after carburization, which promoted the formation of loose and unprotected TiO2 in the coating during molten salt corrosion. In addition, the oxidation of the carbon atom into CO2 led to a high concentration of pores in the coating, creating channels for NaCl to penetrate the coating and accelerate the corrosion rate.

Funder

Science and Technology Project of Education Department of Hunan Province

Hunan Provincial Natural Science Foundation of China

National Training Program for College Students’ Innovation and Entrepreneurship

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3