Internal Structure and Temporal Stability of Hard X-ray Pd/B4C Multilayer Mirrors under Different Humidity Environments

Author:

Liu Genchang,Huang QiushiORCID,Qi Runze,Ni Hangjian,Feng Yufei,Zhang Zhong,Wang Zhanshan

Abstract

Pd/B4C multilayers with 2.5 nm of d-spacing and thick Si and B4C capping layers were fabricated to study temporal stability under storage in different environments with relative humidity of 10% and 50%. The two stored samples were investigated using grazing incidence X-ray reflectometry (GIXR), X-ray scattering (XRS), an optical microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The GIXR results showed that the reflectivity of the samples under 10% humidity and 50% humidity dropped by 3% and 8%, respectively, after 13 months. The optical microscope showed that the surface of the 10% humidity sample was smooth and undamaged, whereas the surface of the 50% humidity sample significantly eroded. TEM showed that the internal multilayer structure of the sample stored in 10% humidity was well protected by the capping layers. For the sample stored in 50% humidity, a major part of the Si and B4C capping layers were wrinkled and delaminated, and some surface layers of the multilayer structure were degraded with severe diffusion of boron. The XPS results showed a relatively large amount of oxygen in the B4C capping layer of the 50% humidity sample, and an obvious oxidation of the boron was found in the B4C capping layer and the surface of the multilayer. The severe oxidation and diffusion of boron and the delamination of the capping layers caused the degradation of the Pd/B4C multilayers stored in 50% humidity.

Funder

National Natural Science Foundation of China

The National Key R&D Program of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference31 articles.

1. Multilayers for high heat load synchrotron applications

2. Multilayer X-ray optics at CHESS

3. Graded multilayers for synchrotron optics;Morawe;AIP Conf. Proc.,2006

4. Multilayer based X-ray optics at the ESRF;Morawe,2018

5. Micro-imaging performance of multilayers used as monochromators for coherent hard X-ray synchrotron radiation;Rack,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3