Study on Durability and Dynamic Deicing Performance of Elastomeric Coatings on Wind Turbine Blades

Author:

Li Ke1,Xue Zhiliang2,Jiang Danqing3,Chen Zhichun4,Si Qi3ORCID,Liu Jixin3,Zhou Yonggang2

Affiliation:

1. Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

3. Guodian Ningbo Wind Power Development Co., Ltd., Ningbo 315000, China

4. Department of Chemistry, Zhejiang University, Hangzhou 310027, China

Abstract

Durable elastomeric deicing coatings were developed for the anti-icing and deicing of wind turbine blades in this study. Our developed deicing coatings demonstrated extremely low ice adhesion strength (~15 kPa). Silica was added to enhance the icephobic surfaces’ durability. The life of the deicing coating with silica was extended by 1.2 times. After 168 h of xenon lamp irradiation, there were no significant changes in the chemical composition of the coatings. Due to the increasing roughness and the decreasing tensile modulus, the contact angle of the aged coatings decreased by 14°. Further outdoor research was carried out on a wind farm for two months to investigate the influence of natural insolation and wind erosion on the elastic deicing coatings. The aged coating still maintained a high hydrophobicity and low ice adhesion strength. The contact angle stabilized at 107°, and the ice adhesion strength was 75% lower than that of the uncoated wind turbine blade. The elastomeric deicing coatings had three advantages: a lagging freezing time, low ice accumulation, and a short icing/deicing cycle. The results of field experiments on the naturally aged coatings showed that the freezing time of the coated blade was delayed by 20 min, and the ice on the coated blade was 29% thinner than that on the uncoated blade.

Funder

National Key R&D Program of China

Zhejiang University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3