Abstract
This paper aims at investigating the microstructure and phases evolution of single crystal superalloy/high temperature protective coating during high temperature static oxidation, and exploring the influence of element interdiffusion behaviour on microstructure and phase evolution of the single crystal superalloy substrate. A NiCoCrAlY high-temperature protective coating was deposited on the Ni-based single-crystal superalloy by low-pressure plasma spraying technology. The coated samples were subjected to static oxidation for 200 h at a constant temperature of 1100 °C. Scanning electron microscope, energy dispersive spectrometer and X-ray diffraction were used to characterise the microstructure and phase after interdiffusion between the coating and the substrate at high temperature. The results showed that a dense thermally grown oxide layer was formed on the surface of the NiCoCrAlY coating after oxidation for over 100 h. The only interdiffusion zone was formed after oxidation for 50 h, while both interdiffusion zone and secondary reaction zone could be observed after oxidation for over 100 h. The thickness of interdiffusion zone and secondary reaction zone is increased with the extension of oxidation time, and the grain growth of topological close-packed phase in the secondary reaction zone is found. Al, Cr and Co in the coating diffuse from the coating to the substrate, while Ni and refractory materials like Ta, Mo, Re and W diffuse from the coating to the substrate. The interdiffusion of coating and substrate leads to the instability of γ/γ′ phase in the substrate, which finally results in the formation of W, Re and Cr-rich needle-like topological close-packed phase in the substrate.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献