Interdiffusion Behaviour of NiCoCrAlY Coating and N5 Single Crystal Superalloy

Author:

Cao Jiaxu,Liu Yingkun,Deng ChunmingORCID,Yang Kun,Li Feng

Abstract

This paper aims at investigating the microstructure and phases evolution of single crystal superalloy/high temperature protective coating during high temperature static oxidation, and exploring the influence of element interdiffusion behaviour on microstructure and phase evolution of the single crystal superalloy substrate. A NiCoCrAlY high-temperature protective coating was deposited on the Ni-based single-crystal superalloy by low-pressure plasma spraying technology. The coated samples were subjected to static oxidation for 200 h at a constant temperature of 1100 °C. Scanning electron microscope, energy dispersive spectrometer and X-ray diffraction were used to characterise the microstructure and phase after interdiffusion between the coating and the substrate at high temperature. The results showed that a dense thermally grown oxide layer was formed on the surface of the NiCoCrAlY coating after oxidation for over 100 h. The only interdiffusion zone was formed after oxidation for 50 h, while both interdiffusion zone and secondary reaction zone could be observed after oxidation for over 100 h. The thickness of interdiffusion zone and secondary reaction zone is increased with the extension of oxidation time, and the grain growth of topological close-packed phase in the secondary reaction zone is found. Al, Cr and Co in the coating diffuse from the coating to the substrate, while Ni and refractory materials like Ta, Mo, Re and W diffuse from the coating to the substrate. The interdiffusion of coating and substrate leads to the instability of γ/γ′ phase in the substrate, which finally results in the formation of W, Re and Cr-rich needle-like topological close-packed phase in the substrate.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3