Abstract
Silicon anode is considered as one of the candidates for graphite replacement due to its highest known theoretical capacity and abundant reserve on earth. However, poor cycling stability resulted from the “volume effect” in the continuous charge-discharge processes become the biggest barrier limiting silicon anodes development. To avoid the resultant damage to the silicon structure, some achievements have been made through constructing the structured space and pore design, and the cycling stability of the silicon anode has been improved. Here, progresses on designing nanostructured materials, constructing buffered spaces, and modifying surfaces/interfaces are mainly discussed and commented from spatial structure and pore generation for volumetric stress alleviation, ions transport, and electrons transfer improvement to screen out the most effective optimization strategies for development of silicon based anode materials with good property.
Funder
National Natural Science Foundation of China
Distinguished Professor of Liaoning Province
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献