On the Icephobic Behavior of Organosilicon-Based Surface Structures Developed Through Atmospheric Pressure Plasma Deposition in Nitrogen Plasma

Author:

Asadollahi Siavash,Farzaneh Masoud,Stafford LucORCID

Abstract

In many regions around the world, atmospheric icing during freezing rains and ice storms can cause severe damage to exposed infrastructure. Subsequently, protective coatings capable of ice accumulation prevention or ice adhesion reduction, often referred to as icephobic coatings, have gained a significant amount of interest. In this study, we examine an atmospheric-pressure plasma jet technique for the development of organosilicon-based icephobic coatings on aluminum substrates. Initially, Al-6061 samples are exposed to multiple passes of air plasma treatment at very short jet-to-substrate distances to create a microporous alumina-based surface structure. These surfaces are then used for plasma deposition of superhydrophobic coatings in the same jet with hexamethyldisiloxane (HMDSO) as the precursor and nitrogen as the plasma gas. Several samples are created with varying plasma precursor flow rates and number of deposition passes. All samples are exposed to three cycles of icing/de-icing to estimate coatings’ stability in aggressive natural conditions. The effects of multiple icing/de-icing cycles on surface chemistry, surface morphology, and wetting behavior is studied. It is shown that the most remarkable mechanism through which icing affects surface properties is coating removal during aggressive de-icing procedure. Finally, the icephobic properties of the most efficient coating (referred to as PT5x3) is further studied through 10 cycles of icing/de-icing, and it is shown that this coating can reduce ice adhesion strength by a factor of at least two for up to nine cycles of icing/de-icing.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference66 articles.

1. The 1998 Ice Storm: 10-Year Retrospective—RMS Special Report,2008

2. Atmospheric icing of power networks;Farzaneh,2008

3. CIGRE Working Group B2.29: Systems for Prediction and Monitoring of Ice Shedding, Anti-Icing and De-Icing for Power Line Conductors and Ground Wires;Eliasson,2010

4. How Wetting Hysteresis Influences Ice Adhesion Strength on Superhydrophobic Surfaces

5. Anti-icing performance of superhydrophobic surfaces

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3