Contribution of Magnetization Mechanisms in MnZn Ferrites with Different Grain Sizes and Sintering Densification

Author:

Liu Hai12,Liao Jihong1,Li Chonghua3,Huang Gang3

Affiliation:

1. Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China

2. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China

3. Hubei Huaci Electronic Technology Co., Ltd., Xiangyang 441053, China

Abstract

This study investigates the magnetization mechanisms in MnZn ferrites, which are key materials in high-frequency power electronics, to understand their behavior under various sintering conditions. Employing X-ray diffraction and scanning electron microscopy, we analyzed the microstructure and phase purity of ferrites sintered at different temperatures. Our findings confirm consistent spinel structures and highlight significant grain-growth and densification variabilities. Magnetic properties, particularly the saturation magnetization (Ms) and initial permeability (μi), were explored, revealing their direct correlation with the sintering process. The decomposition of magnetic spectra into domain-wall-motion and spin-rotation components offered insights into the dominant magnetization mechanisms, with the domain wall movement becoming increasingly significant at higher sintering temperatures. The samples sintered at 1310 °C showcased superior permeability and the least loss in our investigations. This research underscores the impact of sintering conditions on the magnetic behavior of MnZn ferrites, providing valuable guidelines for optimizing their magnetic performance in advanced electronic applications and contributing to the material science field’s understanding of the interplay between sintering, microstructures, and magnetic properties.

Funder

Research and Development Projects in Xiangyang City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3