Structure and Properties of AlCrN Coatings Deposited Using Cathodic Arc Evaporation

Author:

Warcholinski BogdanORCID,Gilewicz Adam,Myslinski Piotr,Dobruchowska EwaORCID,Murzynski Dawid

Abstract

Al–Cr–N coatings were formed at various nitrogen pressures, substrate bias voltages and substrate temperatures using cathodic arc evaporation. The relationship between technological parameters and properties of the coatings was investigated. The phase and chemical composition of the coatings, roughness, hardness, adhesion and thermal stability were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), micro-indenter, Rockwell, scratch tester and thermomechanical methods. The corrosion resistance of selected coatings was also investigated. XRD analysis indicates that the coatings crystallize in a cubic structure and show preferential orientation (200) CrN. With the increase of nitrogen pressure, the preferential orientation changes to (111). EDX analysis shows that as nitrogen pressure increases, the Al/(Al + Cr) rate decreases. Microscopic observations indicate that the number of macroparticles reduces as nitrogen pressure increases. As a result, the surface roughness parameter Ra of the coatings decreases. The effects of deposition temperature, nitrogen pressure and substrate bias voltage on the mechanical and tribological properties of the coatings were investigated. It was found that the above parameters influence the mechanical properties in different ways. The hardness and adhesion of coatings formed at higher temperatures was lower. Coatings formed under a higher nitrogen pressure or substrate bias voltage were characterized by higher hardness and better wear resistance.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3