Affiliation:
1. School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2. Jiangxi Key Laboratory of Forming and Joining Technology for Aviation Components, Nanchang Hangkong University, Nanchang 330063, China
Abstract
In this study, a penetration-controlled friction stir welding (FSW) technique was employed to lap weld dissimilar Al/Mg alloys, incorporating a Zn interlayer. The joint’s microstructure, interfacial reaction, and phase composition were analyzed through optical microscopy, scanning electron microscopy, and X-ray diffraction. The findings demonstrate the formation of a hybrid joint comprising a FSWed region and a diffusion bonding region achieved by introducing a pure Zn interlayer at the Al/Mg interface. Within the FSWed region, the zinc was fully extruded, leading to favorable interface bonding. In contrast, the diffusion bonding region exhibited an aluminum–zinc diffusion reaction layer, an incompletely reacted zinc layer, and a zinc–magnesium diffusion reaction layer. Notably, no Al-Mg intermetallic compounds (IMCs) were observed in either the FSWed or diffusion bonding regions of the hybrid joint. This study further explored the underlying mechanism behind the joint’s formation.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献