Time-Dependent Passivation Performance of Plasma Sprayed FeCrMoCBY Amorphous Coating

Author:

Wang Miqi1ORCID,Zhou Zehua2,Yi Yu2,Zhang Xin2

Affiliation:

1. Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai’an 223003, China

2. College of Mechanics and Materials, Hohai University, Nanjing 211100, China

Abstract

The relationship between passive film growth behavior and passivation time for plasma-sprayed Fe48Cr15Mo14C15B6Y2 amorphous coating in borate buffer solution has been thoroughly studied. The morphological characteristic and structural feature of as-spayed amorphous coating were estimated by scanning electron spectroscopy (SEM), X-ray diffraction (XRD) and transmission electron spectroscopy (TEM). The influence of passivation time on the film evolution properties was measured by electrochemical impedance spectra (EIS), Mott–Schottky curves, atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The results revealed that both corrosion resistance and self-repairing capacity of passive film greatly increased with time based on high electric field assumption. Reductions in donor density and flat band potential were accountable for a lower conductivity of passive film. An increment in Cr2O3 oxide as the inner barrier layer derived from the dehydration reaction of Cr(OH)3 contributed to the gradually densified structure of passive film. The extracted passive film thickness d increment with passivation time t conformed to the logarithm law on the basis of effective capacitance hypothesis: d=0.43lnt+52.06−2.18 (nm). Passivation mechanism within 600 s was ascribed to the adsorption of mechanical mixtures between metal ions and electrolytes, possibly leading to mechanical stress and rupture of passive film in the later growth procedure. The cation vacancy condensation process at the interface of coating/film was propitious in stabilizing the growth rate of passive film.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3