Research on Bending Performance of Concrete Sandwich Laminated Floor Slabs with Integrated Thermal and Sound Insulation

Author:

Liu Peng,Xie Sisi,Liu Lei,Luo Ao,Zhang Ning,He Sasa,Wu Yingye,Xu Wen,Chen Ying,Yu Zhiwu

Abstract

In this study, a full-scale test on the bending performance of concrete sandwich laminated floor slabs with integrated thermal and sound insulation was carried out, and the effects of different reinforcement ratios on the bending performance of concrete sandwich laminated floor slabs were investigated as well as the variation law of the failure modes, characteristic loads, load-mid span deflection, load-rebar strain curves, and anti-slip performance. The results indicate that the concrete sandwich laminated floor slabs present typical bending failure characteristics. According to bending failure characteristics, the damage process can be divided into three stages, i.e., elasticity, cracking, and failure. The bearing capacity significantly increases with the increase in reinforcement ratio. The normal service, yield, and ultimate loads of bearing capacity of the floor slabs with a larger reinforcement ratio increase by 54.55%, 52.94%, and 46.46%, respectively. Moreover, the mid-span deflection decreases significantly with the increase in reinforcement ratio, and the cracking expansion is also delayed. Before cracking, the prefabricated layer and laminated layer can realize load bearing together, and the floor slab is in a state of complete interaction. When the floor slabs reach the ultimate state, the superimposed surface produces a sliding effect, and the floor slab is in a state of partial interaction. The finite element analysis software ABAQUS (with the version number of ABAQUS 2020, the chief creator of David Hibbitt, and the sourced location of the United States) was used to perform nonlinear numerical simulation. The test results accord well with the simulation results, which verifies the correctness of the finite element model. Based on finite element simulation, the influence of post-cast concrete strength on the ultimate load can be ignored.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3