High-Performance ε-Ga2O3 Solar-Blind Photodetectors Grown by MOCVD with Post-Thermal Annealing

Author:

Fei Zeyuan1,Chen Zimin1,Chen Weiqu1,Luo Tiecheng1,Chen Shujian1,Liang Jun12,Wang Xinzhong2,Lu Xing1,Wang Gang13,Pei Yanli13

Affiliation:

1. State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, HEMC, Guangzhou 510275, China

2. Shenzhen Institute of Information Technology, Shenzhen 518172, China

3. Foshan Institute, Sun Yat-sen University, Foshan 528225, China

Abstract

High-temperature annealing has been regarded as an effective technology to improve the performance of Ga2O3-based solar-blind photodetectors (SBPDs). However, as a metastable phase, ε-Ga2O3 thin film may undergo phase transformation during post-annealing. Therefore, it is necessary to investigate the effect of the phase transition and the defect formation or desorption on the performance of photodetectors during post-annealing. In this work, the ε-Ga2O3 thin films were grown on c-plane sapphire with a two-step method, carried out in a metal-organic chemical vapor deposition (MOCVD) system, and the ε-Ga2O3 metal-semiconductor-metal (MSM)-type SBPDs were fabricated. The effects of post-annealing on ε-Ga2O3 MSM SBPDs were investigated. As a metastable phase, ε-Ga2O3 thin film undergoes phase transition when the annealing temperature is higher than 700 °C. As result, the decreased crystal quality makes an SBPD with high dark current and long response time. In contrast, low-temperature annealing at 640 °C, which is the same as the growth temperature, reduces the oxygen-related defects, as confirmed by X-ray photoelectron spectroscopy (XPS) measurement, while the good crystal quality is maintained. The performance of the SBPD with the post-annealing temperature of 640 °C is overall improved greatly compared with the ones fabricated on the other films. It shows the low dark current of 0.069 pA at 10 V, a rejection ratio (Rpeak/R400) of 2.4 × 104 (Rpeak = 230 nm), a higher photo-to-dark current ratio (PDCR) of 3 × 105, and a better time-dependent photoresponse. These results indicate that, while maintaining no phase transition, post-annealing is an effective method to eliminate point defects such as oxygen vacancies in ε-Ga2O3 thin films and improve the performance of SBPDs.

Funder

Natural Science Foundation of China

Science and Technology Development Plan Project of Jilin Province, China

Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3