Structure, Phase Composition, and Properties of Ti3AlC2—Nano-Cu Powder Composites

Author:

Krinitcyn MaksimORCID,Toropkov NikitaORCID

Abstract

Composites based on the MAX-phases are promising materials for wide range application. Composites MAX-phase–copper can be used in electrical engineering as wear-resistant and durable sliding contact materials. Such composites can be used as coatings on sliding contacts to improve local strength and wear-resistance without a significant increase in production costs. In this work, Ti3AlC2—nano-Cu composites with the ratio Ti3AlC2:Cu = 1:1 by weight or approximately 4:1 by volume were studied. The main task of the study is to obtain a dense structure, as well as to study the effect of the sintering temperature of the samples on their structure, phase composition, mechanical properties, and electrical conductivity. In addition, the sintered specimens were subjected to a hot isostatic pressing to possibly further increase the density. It was found that the best combination of strength, density, and electrical conductivity is achieved after sintering at 1050 °C. A further increase in the sintering temperature leads to an intensification of the MAX phase decomposition process, and at a lower sintering temperature, the copper matrix remains incompletely formed.

Funder

President of the Russian Federation for state support of young scientists

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3