Smoke Suppression Properties of Fe2O3 on Intumescent Fire-Retardant Coatings of Styrene–Acrylic Emulsion

Author:

Dong Fang1,Song Qingfeng2,Ma Liyong2ORCID

Affiliation:

1. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Light Alloy Research Institute, Central South University, Changsha 410083, China

2. School of Mechanical Engineering, Hebei University of Architecture, Zhangjiakou 075000, China

Abstract

The intumescent flame-retardant coatings were prepared using ammonium polyphosphate (APP), pentaerythritol (PER), melamine (MEL), styrene–acrylic emulsion, and iron oxide yellow (FeOOH) as the base material. A cone calorimeter (CCT), smoke density meter (SDA), and scanning electron microscope (SEM) were employed to investigate the smoke suppression and flame retardancy of FeOOH in intumescent fire-retardant coatings. The thermal degradation performance of intumescent fireproofing coatings with varying FeOOH content was investigated through thermogravimetric analysis (TGA). The structure of the carbon slag in the CCT test was analyzed using a scanning electron microscope (SEM). The results of the cone calorimeter (CCT) experiments demonstrated that FeOOH significantly reduced the heat release rate (HRR), total heat release rate (THR), smoke production rate (SPR), and total smoke release rate (TSR) of the coating, while simultaneously increasing the carbon residue rate of the coating. The smoke density analysis (SDA) results demonstrate that adding FeOOH can effectively reduce smoke generation, regardless of whether a pilot flame is used. TGA results demonstrate that FeOOH can enhance the weight of coke residue at elevated temperatures. SEM results indicate that incorporating FeOOH resulted in a more compact coke residue. According to these findings, among all the samples, those containing 2 wt% FeOOH showed low levels of HRR, THR, SPR, and TSR and high levels of SOD, which proves that FeOOH can be used as a smoke inhibitor in flame-retardant coatings.

Funder

National Natural Science Foundation of China

State Key Laboratory for High-Performance Complex Manufacturing, Central South University, China

Science and Technology Research and Development Command Plan Project of Zhangjiakou, China

2024 Graduate Innovation Fund project of Hebei University of Architecture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3