Abstract
Burnishing is a cold working technique used as a surface enrichment to meet the desired surface properties of the workpiece. It improves the visual properties, dimensional tolerances, fatigue strength, surface roughness, and hardness of the work material by applying appropriate pressure through a complex ball burnishing tool to cause plastic deformation. In the current work, the mathematical modeling of the burnishing process was carried out to predict surface roughness by considering the process parameters such as contact radius, penetration depth, and elastic rebound. Further, a customized tungsten carbide (W.C.) insert having a hardness of 80 HRC was developed for the burnishing operation. The micro-hardness of the resulting burnished surface improved from 44 to 48 HRC. The surface quality of the tungsten carbide insert improved by up to 17.1 nm through polishing. Several experiments were performed by selecting appropriate process parameters using developed model feedback. The surface quality of the workpiece improved by up to 45 nm, which resulted in automatic improvements in fatigue strength up to seven times that of the virgin material. The results predicted from the mathematical model were in good agreement (less than 5% deviation) with the experimental results. This study helps to understand the surface formation mechanism in the burnishing process in more detail. Additionally, the achieved results show a significant improvement in the surface finish (~95%), indicating the potential of the burnishing process and how fast and cost-effective it is. The novelty of this paper lies in the improvement in surface roughness and the validation of our mathematical model results with the experimental results.
Funder
„Ghoerghe Asachi” Tehnical University of Iasi
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献