Adhesion Strength and Anti-Corrosion Performance of Ceramic Coating on Laser-Textured Aluminum Alloy

Author:

Fan Changfeng12,Wang Xue3,Yin Xiaoli1,Huang Wei14,Da Yujie1,Jiang Hao1,Cao Jingfeng1,Gai Yongchao1,Zhang Wangwang5

Affiliation:

1. College of Intelligent Manufacturing and Control Engineering, Shandong Institute of Petroleum and Chemical Technology, Shandong 257061, China

2. Key Laboratory of Mechanical Surface Engineering and Tribology, Shandong Institute of Petroleum and Chemical Technology, Shandong 257061, China

3. College of Chemical Engineering, China University of Petroleum, Shandong 266580, China

4. Dongying Pinmo Import and Export Co., Ltd., Shandong 257061, China

5. Dongying City Infrastructure Pipeline Natural Gas Limited Liability Company, Shandong 257061, China

Abstract

Laser surface texturing and micro-arc oxidation provide excellent approaches to enhance the adhesion strength and anti-corrosion performance of adhesive bonding interfaces in aluminum alloys, which can be applied in the field of automotive light weighting. Herein, micro-arc oxidation coatings were fabricated on the laser-textured aluminum surface under the voltage of 500 V for various treatment times (5 min, 15 min, 30 min, 60 min). The anti-corrosion performance of ceramic coatings on the laser-textured surface was analyzed using electrochemical measurements. The results of electrochemical measurement indicate that the coating on the sample surface presents two time constants corresponding to a dual-layer structure. The sample grown under 500 V for 60 min exhibits excellent protective performance with a value of 1.3 × 107 ohm·cm2. The adhesion strength of laser-textured ceramic coating is improved compared with the as-received substrate. The sample treated with 500 V for 30 min exhibits the highest bonding strength with a value of 52 MPa. The wider pores and bulges for the sample grown in 60 min would introduce microcracks and consequently reduce the adhesion strength.

Funder

Dongying Science and Technology Development Foundation

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3