Dispersed CeO2 Nanorods with Low-Speed Mixing for Mechanical Properties Promotion of PTA Steel Coatings

Author:

Yue Jun-Yu1ORCID,Jiao Peng-Cheng23,Sui Yi1,Lu Fei1,Zhang Rui-Ying2ORCID,Chen Wei-Dong2,Zhao Li-Sha1

Affiliation:

1. State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China

2. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

3. Shanxi Taiyuan Stainless Steel Co., Ltd., Taiyuan 030003, China

Abstract

The plasma-transferred arc technology has been observed to induce preferential grain orientation in multiple directions, leading to nonuniform grain growth within the alloy coating material. The addition of nano-oxides can act as heterogeneous nucleation sites, reducing the preferred orientation of grains. In this study, a low-speed mixing method was employed to coat highly dispersed CeO2 nanorods (CNRs) onto the surface of 14Cr2NiSiVMn alloy powder particles. The aim was to analyze the influence of dispersed CNRs on grain growth orientation in different directions and the refinement and heterogeneous nucleation effect of CNR additives. The addition of 0.5 wt.% CNRs resulted in the refinement of dendritic grains along both the perpendicular and parallel directions to the coating cladding direction, leading to the formation of more uniform equiaxed crystals. The combination of Ce with Si and V elements formed submicron particles, which promoted grain nucleation and reduced defects in the coating. Consequently, the mechanical performance of the sample significantly improved. In the deposition direction, there was a notable improvement in microhardness (20.4%), tensile strength (97.6%), and elongation (59.0%). In the perpendicular deposition direction, the tensile strength increased by 88.1%, and the elongation increased by 33.9%. Additionally, the weight loss due to wear decreased by 44.2%, and the relative wear resistance improved by 79.3%.

Funder

Natural Science Foundation of Inner Mongolia Autonomous Region

Science and Technology Research Project of Inner Mongolia Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3