Author:
Wang Shaoqing,Ji Wei,Wang Yaru,Wei Jiantao,Qiu Lianchang,Chen Chong,Jiang Xiaojun,Ran Qingxuan,Han Rihong
Abstract
In the present work, a low-pressure chemical vapor deposition (LPCVD) Ti0.17Al0.83N and state-of-the-art arc ion plating PVD-Ti1−xAlxN (x = 0.25, 0.55, 0.60, 0.67) coatings were deposited on cemented carbide substrate. The morphological, structural, and electrochemical properties of LPCVD-Ti0.17Al0.83N and PVD-Ti1−xAlxN coatings were compared. The X-ray diffraction (XRD) results and scanning electron microscopy (SEM) images revealed that the LPCVD-Ti0.17Al0.83N coating had a face-centered cubic (fcc) structure, while presenting a crack-free surface morphology and a compressive residual stress of −131.9 MPa. The PVD coatings with a composition of x ≤ 0.60 had an fcc structure, while the PVD-Ti0.33Al0.67N coating consisted of fcc and w-AlN phases. The results of the electrochemical corrosion test showed that the LPCVD-Ti0.17Al0.83N coating had the lowest corrosion current density in a 3.5 wt.% NaCl solution. After a 20-day immersion corrosion test in a 5 mol/L HCl solution, the LPCVD-Ti0.17Al0.83N coating displayed higher stability than the PVD-Ti1−xAlxN coating. The results of electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) analysis revealed that more uniform and denser passivation film, as well as higher Al2O3 proportion in the Al2O3/TiO2 composite passive layer, led to the outstanding corrosion resistance of the LPCVD-Ti0.17Al0.83N coating.
Funder
Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献