Mechanism of Ag-SiO2-TiO2 Nanocomposite Coating Formation on NiTi Substrate for Enhanced Functionalization

Author:

Dudek Karolina1ORCID,Dulski Mateusz2ORCID,Podwórny Jacek1ORCID,Kujawa Magdalena1,Rawicka Patrycja3ORCID

Affiliation:

1. Łukasiewicz Research Network—Institute of Ceramics and Building Materials, Center of Refractory Materials, Cementowa 8, 31-983 Cracow, Poland

2. Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland

3. Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland

Abstract

The functionality of the NiTi shape memory alloy was improved through engineering Ag-SiO2-TiO2 nanocomposite coatings. For this purpose, an anaphoretic deposition process, conducted at a constant voltage of 40 V and deposition times ranging from 1 to 10 min, was used. Scanning electron microscopy (SEM) analysis demonstrated that the deposition parameters significantly impacted the morphology of the coatings. Complementary Raman Spectroscopy and X-ray diffraction (XRD) analyses confirmed the successful formation of distinct nanocomposite layers, and revealed the details of their crystalline structure and chemical composition. After that, the adhesion between the NiTi substrate and the electrophoretically deposited ceramic coatings was improved through a post-deposition heat treatment. To prevent excessive shrinkage and cracking of the coating, tests were carried out to characterize the behavior of the coating material at elevated temperatures. The nanocomposite coatings were exposed to a temperature of 800 °C for 2 h. The annealing induced significant structural and morphological transformations, resulting in layers that were distinctly different from both the original materials and those produced solely through electrophoretic deposition. The thermal treatment resulted in the formation of a new kind of nanocomposite structure with enhanced reactivity.

Funder

National Science Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3