Fabrication and Characterization of Titanium Borides by Electron Beam Surface Alloying

Author:

Padikova Fatme12,Nedeva Daniela2ORCID,Dunchev Vladimir3ORCID,Stoyanov Borislav4ORCID,Ormanova Maria1,Nedyalkov Nikolay1,Valkov Stefan12ORCID

Affiliation:

1. Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

2. Department of Mathematics, Informatics and Natural Sciences, Technical University of Gabrovo, 4 Hadji Dimitar Street, 5300 Gabrovo, Bulgaria

3. Department of Material Science and Mechanics of Materials, Technical University of Gabrovo, 4 Hadji Dimitar Street, 5300 Gabrovo, Bulgaria

4. Department of Industrial Design and Textile Engineering, Technical University of Gabrovo, 4 Hadji Dimitar Street, 5300 Gabrovo, Bulgaria

Abstract

This study shows the possibility of the fabrication of titanium borides by an alloying of a titanium substrate with boron powder via a scanning electron beam. During the electron beam alloying experiments, the speed movement of the specimens was varied, where it was 4 and 6 mm/s. The thickness of the alloyed zone formed by the lower velocity of the movement of the workpiece is greater than that of the coating obtained by the higher speed movement. The phase composition of the coatings is in the form of the TiB2 phase, as well as some amount of undissolved boron in both considered cases. In the case of the lower speed of the movement of the sample, the undissolved boron is within the whole volume of the alloyed zone, while at the higher speed movement, it is on the top of the specimen. The hardness of the obtained coatings by the higher speed of the specimen movement reached values of about 4500 HV. Considering the values of the surface alloy fabricated via the lower velocity movement of 4 mm/s, it is about 2600 HV, which is lower than that of the one obtained by the 6 mm/s speed of the sample movement. The result obtained for the friction coefficient (COF) for the specimen alloyed by the speed of the specimen motion of 4 mm/s is 0.40; the value for the coating obtained at a speed movement of 6 mm/s is 0.34. In both cases, these values are lower than that of the titanium substrate.

Funder

OP “Science and Education for Smart Growth”, “Creation and development of centres of competence”

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3