Abstract
Traditional refractory materials such as nickel-based superalloys have been gradually unable to meet the performance requirements of advanced materials. The Mo-Si-based alloy, as a new type of high temperature structural material, has entered the vision of researchers due to its charming high temperature performance characteristics. However, its easy oxidation and even “pesting oxidation” at medium temperatures limit its further applications. In order to solve this problem, researchers have conducted large numbers of experiments and made breakthrough achievements. Based on these research results, the effects of rare earth elements like La, Hf, Ce and Y on the microstructure and oxidation behavior of Mo-Si-based alloys were systematically reviewed in the current work. Meanwhile, this paper also provided an analysis about the strengthening mechanism of rare earth elements on the oxidation behavior for Mo-Si-based alloys after discussing the oxidation process. It is shown that adding rare earth elements, on the one hand, can optimize the microstructure of the alloy, thus promoting the rapid formation of protective SiO2 scale. On the other hand, it can act as a diffusion barrier by producing stable rare earth oxides or additional protective films, which significantly enhances the oxidation resistance of the alloy. Furthermore, the research focus about the oxidation protection of Mo-Si-based alloys in the future was prospected to expand the application field.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献