Improving the Protective Properties of Shellac-Based Varnishes by Functionalized Nanoparticles

Author:

Weththimuni Maduka L.ORCID,Milanese ChiaraORCID,Licchelli MaurizioORCID,Malagodi Marco

Abstract

Shellac is a natural varnish still known as one of the most elegant finishes for furniture and musical instruments, and currently used for restoration and refinishing of wooden antiques. However, it displays some limitations such as (i) sensitivity to alcoholic solvents (ii) softness of the coating, and (iii) considerable weathering due to photo- and bio-degradation. Hence, the main aim of this study was to improve the properties of shellac-based finish by introducing functionalized nanoparticles. Two inorganic nano-sized materials were considered: ZnO that was expected to reduce photo- and bio-degradation problems, and ZrO2 that was expected to improve the hardness of the varnish. Nanoparticles were synthesized and treated with a bifunctional silane coupling agent. Both plain and functionalized nanoparticles were extensively characterized using different experimental techniques. Functionalized nanoparticles were grafted on shellac through a reaction involving the epoxy-rings introduced on their surface. The resulting modified varnishes were applied on maple wood specimens according to traditional procedures. Different instrumental techniques and testing methods were used to characterize both nano-sized materials and the corresponding nanocomposites, as well as to evaluate the performance of the new coatings. The investigated composite materials display the same aesthetic appearance as plain shellac, while some other properties were improved. In particular, both nanocomposites are distinctly less soluble in alcohols than plain shellac and display antifungal properties. Moreover, coating containing functionalized ZnO nanoparticles displays photo-protection behavior, while shellac modified with ZrO2 nanoparticles exhibits a higher hardness when compared to the traditional varnish.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3