Abstract
Considering the lack of an effective anti-oxidation protective layer for the oxidation process of Ti3SiC2, an in situ synthesis of Ti3SiC2 and Al2O3 was designed. Thermally stable Al2O3 was used to improve the high-temperature oxidation resistance of Ti3SiC2. Samples without TiC were selected for the oxidation test, and the oxidation morphology and weight gain curves of the oxidized surface in air at 1400 °C are reported. The change in the oxidation behavior occurred 4 h after oxidation. The addition of Al2O3 changed the composition of the oxide layer and compensated for the lack of a dense protective layer during Ti3SiC2 oxidation. Moreover, after 4 h of oxidation, the newly generated Al2TiO5 and the composite layer formed by diffusion were the main reasons for the large difference in the final weight gain between the two sets of samples.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Shandong Province
Shandong Provincial Natural Science Foundation
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
Taishan Scholars Program
Case-by-Case Project for Top Outstanding Talents of Jinan
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献