Novel Collection Equipment Loaded with Superhydrophobic Sponge for Continuous Oil/Water Separation from Offshore Environments

Author:

Yan Xi1,Xie Yan1,Sheng Xuejia1,Zhang Shucai1ORCID,Song Xiangning1

Affiliation:

1. State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266100, China

Abstract

Currently, frequent oil spill accidents caused by transportation, storage, and usage may lead to extensive damage to marine ecosystems. Effective methods for oil spillage recovery from offshore environments are still urgently in demand. A superhydrophobic sponge (MS@PVC@SiO2) was obtained via a facile two-step method for rapid oil adsorption, and a piece of novel collection equipment loaded with MS@PVC@SiO2 was developed for in situ continuous oil/seawater separation. The results showed that MS@PVC@SiO2 exhibits excellent water repellence, compressibility, and durability. Furthermore, the obtained MS@PVC@SiO2 shows high diesel oil adsorption capacity (32 g/g), and excellent recyclability (up to 200 times). The collection equipment demonstrates highly selective oil adsorption capacity and good stability in real seawater. The maximum possible recovery capacity of collection equipment was 557.784 L/h with 98% efficiency, which was much higher than that of commercial disc oil collectors (119.8 L/h). The recovery performance was effectively improved by introducing MS@PVC@SiO2, due to its large specific area and enough storage space. Moreover, even after continuous operation for 58 h in seawater, the collection equipment remained at a high recovery capacity. The results indicate that both MS@PVC@SiO2 and the collection equipment have great application perspectives in practical marine oil spillage recovery.

Funder

National Key Project of “Science and Technology Boosting Economy 2020"

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3