Sonophotocatalytic Degradation of Malachite Green by Nanocrystalline Chitosan-Ascorbic Acid@NiFe2O4 Spinel Ferrite

Author:

Hasan ImranORCID,Bassi Akshara,Alharbi Khadijah H.,BinSharfan Ibtisam I.,Khan Rais AhmadORCID,Alslame AliORCID

Abstract

Statistics show that more than 700 thousand tons of dye are produced annually across the globe. Around 10–20% of this is used in industrial processes such as printing and dyeing, while about 50% of the dye produced is discharged into the environment without proper physicochemical treatment. Even trace amounts of dye in water can reduce oxygen solubility and have carcinogenic, mutagenic, and toxic effects on aquatic organisms. Therefore, before dye-containing wastewater is discharged into the environment, it must be properly treated. The present study investigates the green synthesis of nickel ferrite NiFe2O4 (NIFE) spinel magnetic nanoparticles (MNPs) via chemical coprecipitation of a solution of Ni2+/Fe3+ in the presence of a biopolymer blend of chitosan (CT) and ascorbic acid (AS). The magnetic nanomaterial was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy–energy dispersive X-ray analysis (SEM-EDX), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), and vibrating-sample magnetometry (VSM). The material was further explored as a catalyst for the photocatalytic degradation of malachite green (MG) under visible light irradiation coupled with ultrasonic waves. The combination of 90 min of visible solar light irradiation with 6.35 W·mL−1 ultrasonic power at pH 8 resulted in 99% of the photocatalytic efficiency of chitosan-ascorbic acid@NIFE (CTAS@NIFE) catalyst for 70 mg·L−1 MG. The quenching of the photocatalytic efficiency from 98% to 64% in the presence of isopropyl alcohol (IPA) suggested the involvement of hydroxy (•OH) radicals in the mineralization process of MG. The high regression coefficients (R2) of 0.99 for 35, 55, and 70 mg·L−1 MG indicated the sonophotocatalysis of MG by CTAS@NIFE was best defined by a pseudo first-order kinetic model. The mechanism involves the adsorption of MG on the catalyst surface in the first step and thereby mineralization of the MG by the generated hydroxyl radicals (•OH) under the influence of visible radiation coupled with 6.34 W·mL−1 ultrasonic power. In the present study the application of photodegradation process with sonochemistry results in 99% of MG mineralization without effecting the material structure unlike happens in the case adsorption process. So, the secondary pollution (generally happens in case of adsorption) can be avoided by reusing the spent material for another application instead of disposing it. Thus, the ecofriendly synthesis protocol, ease in design of experimentation like use of solar irradiation instead of electric power lamps, reusability and high efficiency of the material suggested the study to be potentially economical for industrial development at pilot scale towards wastewater remediation.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3