Numerical Study on Particle Behavior and Deposition Accuracy in Cold Spray Additive Manufacturing

Author:

Garmeh Saeed,Jadidi Mehdi

Abstract

Cold Spray additive manufacturing (CSAM) is an emerging technique to fabricate freestanding objects by depositing solid-state layers of materials. Thanks to its remarkable deposition rate and maneuverability, it can be tailored to manufacturing intricate geometries in aerospace industries. In comparison to other additive manufacturing techniques, it is the processing speed, solid-state deposition, and the cost that make CSAM unique. In this study, CSAM process was modeled for a system comprised of a high-pressure cold spray gun with axial powder injection. To represent the flow structure around the already built objects and the deposited layers of CSAM, three walls with different profiles are placed on a flat substrate. In this work, the gas-particle behaviors are studied at the vicinity of these non-axisymmetric objects that can be generalized to more complex geometries and the applications of CSAM. The model is 3D and aluminum and copper powders were used for the feedstock. The particles’ conditions upon impact, such as particles’ footprint and normal impact velocities are studied. The numerical results show that the deviation of particles which is caused by the supersonic flow inside the nozzle and the shock waves outside the nozzle defines the accuracy of the deposition. Furthermore, the results manifest the particle’s material and size have a significant influence on the acquired velocities and trajectories of the particles, and consequently on the resolution of the process. It is found that the profile of the deposited layers has some effects on the gas flow near the substrate which plays a role in the dispersion of fine particles.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3