Author:
Wu Hu-Lin,Long Zhi-Mei,Song Kai-Qiang,Li Chao-Qun,Cong Da-Long,Shao Bin,Liu Xiao-Wei,Ma Yi-Long
Abstract
Temperature cycling tests in various temperature ranges were carried out to investigate the magnetic degradation of the Zn-coated NdFeB magnet. The losses of the surface magnetic field and magnetic flux were well fitted by using an index model. Compared with the lower limit temperature, the upper limit temperature had more obvious effect on the magnetic degradation. Once the upper limit temperature exceeded ≥160 °C, the magnetic degradation mainly occurred during the first cycle, which was different from the gradual decline with an increase in cycle number at a temperature of ≤140 °C. Moreover, the temperature cycling with a maximum upper limit temperature of 180 °C led to a loss of the remanence intensity, while the coercivity remained stable. Microstructure and element distribution analysis revealed that the oxidation of the Zn coating layer during the temperature cycling causes its cracking and an insertion of the oxygen element into the NdFeB substrate. The Nd-, Pr-rich phase at grain boundaries provided diffusion channels for oxygen elements, leading to a surface oxidation of NdFeB grains.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献