Enhanced Anti-Tribocorrosion Performance of Ti-DLC Coatings Deposited by Filtered Cathodic Vacuum Arc with the Optimization of Bias Voltage

Author:

Shen Yongqing,Luo Jun,Liao Bin,Chen Lin,Zhang Xu,Zhao Yuanyuan,Pang Pan,Zeng Xinmiao

Abstract

To improve the anti-tribocorrosion property, and decrease the metal dissolution and wear of stainless-steel components caused by the synergistic action of corrosion and friction in marine environments, Ti-DLC coatings were obtained on steel substrate using a filtered cathodic vacuum arc (FCVA) system by adjusting bias voltage. The structure, mechanical properties, corrosion, and tribocorrosion behavior were investigated. Increasing the bias voltage from −50 V to −300 V, Ti content decreased from 23.9 to 22.5 at.%, and grain size decreased first, and then increased. Obvious TiC grains embedded in the amorphous carbon matrix were observed in the coating from the TEM result. Hardness increased from 30.23 GPa to 34.24 GPa with an increase in bias voltage from −50 to −200 V. The results of tribocorrosion testing showed that the Ti-DLC coatings at −200 V presented the best anti-tribocorrosion performance with the smallest friction coefficient of 0.052, wear rate of 2.48 × 10−7 mm3/N∙m, and high open-circuit potential, which is mainly due to the dense structure, high value of H/E* and H3/E*2, and great corrosion resistance. Obtained results suggest that the Ti-DLC coating with nanocomposite structure is a potential protective material for marine equipment.

Funder

China Postdoctoral Science Foundation

Youth Program of National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3