A Novel SERS Substrate Based on Discarded Oyster Shells for Rapid Detection of Organophosphorus Pesticide

Author:

Chu Chi-Yu,Lin Pei-YingORCID,Li Jun-Sian,Kirankumar Rajendranath,Tsai Chen-Yu,Chen Nan-Fu,Wen Zhi-HongORCID,Hsieh ShuchenORCID

Abstract

Over the past few years, the concern for green chemistry and sustainable development has risen dramatically. Researchers make an effort to find solutions to difficult challenges using green chemical processes. In this study, we use oyster shells as a green chemical source to prepare calcium oxide nanoparticles (CaO-NPs). Transmission electron microscopy (TEM) results showed the CaO-NPs morphology, which was spherical in shape, 40 ± 5 nm in diameter, with uniform dispersion. We further prepared silver/polydopamine/calcium-oxide (Ag/PDA/CaO) nanocomposites as the surface-enhanced Raman scattering (SERS) substrates and evaluated their enhancement effect using the methyl parathion pesticide. The effective SERS detection limit of this method is 0.9 nM methyl parathion, which is much lower than the safety limits set by the Collaborative International Pesticides Analytical Council for insecticide in fruits. This novel green material is an excellent SERS substrate for future applications and meets the goal of green chemistry and sustainable development.

Funder

Kaohsiung Armed Forces General Hospital

Ministry of Science and Technology

National Sun Yat-sen University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3