Plasma Enhanced-Chemical Vapor Deposition of 2-Isopropenyl-2-Oxazoline to Promote the Adhesion between a Polyethylene Terephthalate Monofilament and the Rubber in a Tire

Author:

Gaifami Carlo Maria,Zanini Stefano,Zoia Luca,Riccardi ClaudiaORCID

Abstract

A Plasma-Enhanced Chemical Vapor Deposition was chosen in order to deposit an organic thin film on polyethylene terephthalate monofilament to increase its adhesion with the rubber compound in a tire. The aim of the work is to find an alternative “green” method to the classical chemical dipping with Resorcinol Formaldehyde Latex: plasma treatments are environmentally friendly and easy to use. 2-isoprepenyl-2-oxazoline (2-iox) was employed as precursor and the treatments were performed in a vacuum system, both in a continuous regime and a pulsed regime. Initially, the coatings were deposited on polyethylene terephthalate sheets to study the wettability (by the measurement of contact angle) and the thickness (by profilometer) of the plasma polymer. The chemical characterization was investigated by Infrared and X-ray Photoelectron spectroscopies. Finally, the adhesion of the polyethylene terephthalate sheets was measured by Peel Test, using the coating as adhesive and as a pre-dip. The measurement of the peel force made it possible to optimize the plasma parameters that were applied on the monofilament. The adhesion was estimated by the measure of the extraction force and the evaluation of the coverage compared with those of the classical chemical treatment Resorcinol Formaldehyde Latex.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference31 articles.

1. Passenger Car Tires and Wheels: Development—Manufacturing—Application;Leister,2018

2. The Application of Textiles in Rubber;Wootton,2001

3. Pneumatic Tire;Gent,2006

4. Coating of PET cords at atmospheric pressure plasma discharge in the presence of butadiene/nitrogen gas mixtures;Jaššo;Surf. Coat. Technol.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3