Controlling Morphology and Wettability of Intrinsically Superhydrophobic Copper-Based Surfaces by Electrodeposition

Author:

Akbari RaziyehORCID,Mohammadizadeh Mohammad Reza,Antonini CarloORCID,Guittard Frédéric,Darmanin Thierry

Abstract

Electrodeposition is an effective and scalable method to grow desired structures on solid surfaces, for example, to impart superhydrophobicity. Specifically, copper microcrystals can be grown using electrodeposition by controlling deposition parameters such as the electrolyte and its acidity, the bath temperature, and the potential modulation. The aim of the present work is the fabrication of superhydrophobic copper-based surfaces by electrodeposition, investigating both surface properties and assessing durability under conditions relevant to real applications. Accordingly, copper-based layers were fabricated on Au/Si(100) from Cu(BF4)2 precursor by electrodeposition, using cyclic voltammetry and square-pulse voltage approaches. By increasing the bath temperature from 22 °C to 60 °C, the growth of various structures, including micrometric polyhedral crystals and hierarchical structures, ranging from small grains to pine-needle-like dendrite leaves, has been demonstrated. Without any further physical and/or chemical modification, samples fabricated with square-pulse voltage at 60 °C are superhydrophobic, with a contact angle of 160° and a sliding angle of 15°. In addition, samples fabricated from fluoroborate precursor are carefully compared to those fabricated from sulphate precursor to compare chemical composition, surface morphology, wetting properties, and durability under UV exposure and hard abrasion. Results show that although electrodeposition from fluoroborate precursor can provide dendritic microstructures with good superhydrophobicity properties, surfaces possess lower durability and stability compared to those fabricated from the sulphate precursor. Hence, from an application point of view, fabrication of copper superhydrophobic surfaces from sulphate precursor is more recommended.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3