Powder Diffraction Data of Aluminum-Rich FCC-Ti1−xAlxN Prepared by CVD

Author:

Endler Ingolf,Höhn MandyORCID,Matthey BjörnORCID,Zálešák JakubORCID,Keckes Jozef,Pitonak Reinhard

Abstract

Fcc-Ti1−xAlxN-based coatings obtained by Physical Vapor Deposition (PVD) or Chemical Vapor Deposition (CVD) are widely used as wear-resistant coatings. However, there exists no JCPDF card of fcc-Ti1−xAlxN for the XRD analysis of such coatings based on experimental data. In this work, an aluminum-rich fcc-Ti1−xAlxN powder was prepared and, for the first time, a powder diffraction file of fcc-Ti1−xAlxN was determined experimentally. In the first step, a 10 µm thick Ti1−xAlxN coating was deposited on steel foil and on cemented carbide inserts by CVD. The steel foil was etched and flakes of a free-standing Ti1−xAlxN layer were obtained of which a part consisted of a pure fcc phase. A powder was produced using the major part of the flakes of the free-standing Ti1−xAlxN layer. Following the Ti1−xAlxN coating, a flake of the free-standing layer and the powder were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction and high-resolution transmission electron microscopy (SAED–HRTEM), wavelength dispersive X-ray spectroscopy (WDS) and energy dispersive X-ray spectroscopy (EDS). The powder consisted of 88% fcc-Ti1−xAlxN. The stoichiometric coefficient of fcc-Ti1−xAlxN was measured on a flake containing only the fcc phase. A value of x = 0.87 was obtained. Based on the powder sample, the XRD data of the pure fcc-Ti1−xAlxN phase were measured and the lattice constant of the fcc-Ti1−xAlxN phase in the powder was determined to be a = 0.407168 nm. Finally, a complete dataset comprising relative XRD intensities and lattice parameters for an fcc-Ti0.13Al0.87N phase was provided.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3