Cavitation Erosion Resistance and Wear Mechanism Model of Flame-Sprayed Al2O3-40%TiO2/NiMoAl Cermet Coatings

Author:

Szala MirosławORCID,Hejwowski Tadeusz

Abstract

This manuscript deals with the cavitation erosion resistance of flame-sprayed Al2O3-40%TiO2/NiMoAl cermet coatings (low-velocity oxy-fuel (LVOF)), a new functional application of cermet coatings. The aim of the study was to investigate the cavitation erosion mechanism and determine the effect of feedstock powder ratio (Al2O3-TiO2/NiMoAl) of LVOF-sprayed cermet coatings on their cavitation erosion resistance. As-sprayed coatings were investigated for roughness, porosity, hardness, and Young’s modulus. Microstructural characteristics of the cross section and the surface of as-sprayed coatings were examined by light optical microscopy (LOM), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) methods. Coating cavitation tests were conducted in accordance with the ASTM G32 standard using an alternative stationary specimen testing method with usage of reference samples made from steel, copper, and aluminum alloys. Cavitation erosion resistance was measured by weight and volume loss, and normalised cavitation erosion resistance was calculated. Surface eroded due to cavitation was examined in successive time intervals by LOM and SEM-EDS. On the basis of coating properties and cavitation investigations, a phenomenological model of the cavitation erosion of Al2O3-40%TiO2/NiMoAl cermet coatings was elaborated. General relationships between their properties, microstructure, and cavitation wear resistance were established. The Al2O3-40%TiO2/NiMoAl composite coating containing 80% ceramic powder has a higher cavitation erosion resistance than the reference aluminium alloy.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3