Effect of WC Content on the Wear and Corrosion Properties of Oscillating Laser-Cladding-Produced Nickel-Based Coating

Author:

Li Xuening1,Zhang Songyan1,Liu Wei1,Pang Xiaotong1,Tong Yonggang1ORCID,Zhang Mingjun1,Zhang Jian1,Wang Kaiming12ORCID

Affiliation:

1. College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Pneumatic conveying pipe is an important part of the coal industry. Its working environment is harsh, and it is mainly affected by serious wear and corrosion, which affects its operating life. Studying a method of strengthening the pipe wall of pneumatic conveying pipe is of great significance. In this paper, nickel-based alloy coatings with different WC (tungsten carbide) contents were prepared using an oscillating laser-cladding process, and the micro-characterization characteristics, wear resistance and corrosion resistance of the laser-cladded layer were discussed. The main conclusions are as follows: The microstructure of the laser-cladded layer gradually grows from the plane crystals and cellular crystals at the bottom to the relatively coarse columnar crystals in the middle, and finally to a large number of equiaxed crystals in the upper part. Moreover, with an increase in WC content, more fine equiaxed crystals are formed, mainly due to the decrease in temperature gradient with the increase in distance from the fusion line. Also, with an increase in WC content, the hardness and wear resistance of the nickel-based alloy are improved. When 20% WC is added, the laser-cladded layer shows the best corrosion resistance in 3.5 wt.% NaCl solution, and its polarization resistance is 16% lower than that when 10% WC is added. This study provides a technical reference for improving the operating life of pneumatic conveying pipelines.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Changsha Municipal Natural Science Foundation

Changsha Key Research and Development Project

Tribology Science Fund of the State Key Laboratory of Tribology in Advanced Equipment

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3