Analysis of Surface Properties of Ag and Ti Ion-Treated Medical Textiles by Metal Vapor Vacuum Arc Ion Implantation

Author:

Akpek AliORCID

Abstract

The study focuses on the effects of Ag (silver) and Ti (titanium) ions on textiles by MEVVA (metal vapor vacuum arc) ion implantation. In order to comprehend this, the research was executed in three parts. In the first part, the antibacterial efficiencies of Ag and TiO2 were investigated in detail since the antibacterial capabilities of Ag and TiO2 are well known. A group of polyester- and cotton-based medical textiles were modified by Ag and TiO2 ions, with doses ranging from 5 × 1015 to 5 × 1016 ion/cm2. To determine the adhesion capabilities of the implanted ions on surfaces, after the first round of antibacterial tests, these medical textiles were washed 30 times, and then antibacterial tests were performed for the second time. The results were also compared with nanoparticle-treated medical textiles. In the second part, the corrosion and friction capabilities of Ag and Ti ion-implanted polyester textiles, with a dose of 5 × 1015 ion/cm2, were investigated. Finally, the UV protection capabilities of Ag and Ti ion-implanted polyester textiles, with a dose of 5 × 1015 ion/cm2, were investigated. The experiments showed that even after 30 washes, the TiO2 ion-implanted polyester textile had almost 85% antibacterial efficiency. In addition, Ti ion implantation reduced the friction coefficiency of a polyester textile by almost 50% when compared with an untreated textile. Finally, the Ag-ion-implanted polyester textile provided a UV protection factor of 30, which is classified as very good protection.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference34 articles.

1. Properties of Antibacterial Nano Textile for Use in Hospital Environments

2. Antimicrobial Approaches for Textiles: From Research to Market

3. Advances in nanotextile finishes—An approach towards sustainability;Gokarneshan,2017

4. Insights into the functional finishing of textile materials using nanotechnology;Islam,2017

5. Bacteria Exposed to Silver Nanoparticles Synthesized by Laser Ablation in Water: Modelling E. coli Growth and Inactivation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3