Abstract
ITO/PEDOT:PSS/P3HT:PC60BM/Mg-Al organic solar cells (OSCs) were fabricated depending on optimization of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-Butyric-Acid-Methyl Ester (PC60BM). The optimization of the active layer, P3HT:PC60BM, was carried out under different spin frequencies coating from 900 to 3000 rpm. The post-production annealing temperature of all prepared OSC was studied from 130 to 190 °C. The holes transport layer, poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS), was prepared under constant conditions of 3000 rpm for 35 s, and annealing temperature 178 °C for 15 min. From our study, the optimum conditions for P3HT:PC60BM were spin coating of 3000 rpm, and annealing temperature of 160 °C for 5 min. The optimum J-V parameters values for the prepared OSC were JSC = 12.01 mA/cm2, VOC = 660 mV, FF = 59%, PCE = 4.65%, and EQE = 61%. A complete OSC with acceptable efficiency was designed using simple and low-cost techniques that may be utilized in the industry. Furthermore, the cost of the synthesized solar cell is projected to be around 1 $/cm2, with the goal of lowering the cost and increasing efficiency in the future by incorporating more commercial nanostructured electron/hole transport components.
Funder
Deanship of Scientific Research at Islamic University, Madinah, Saudi Arabia
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献