Preparation and Antibacterial Properties of PLA-Based Composite Nanofiber Membrane Material Loaded with Cationic Antibacterial Agent by Electrospinning

Author:

Gong Hongyu1,Li Lin1,Li Na1,Tian Lina1,Zhang Tao2,Zhang Lexin1,Jiao Tifeng1ORCID

Affiliation:

1. State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China

2. Qinhuangdao Huaheng Bioengineering Co., Ltd., Qinhuangdao 066200, China

Abstract

With the continuous application of antibacterial materials, various problems have emerged, such as expensive prices and the potential development of resistance. Cationic antibacterial agents, due to their high solubility, reactivity, and antibacterial properties, are considered as environmentally friendly and cost-effective antibacterial agents. In addition, the electrospinning technique is recognized as a versatile and high-efficiency method to produce nanofibers with multifunctional properties and adjustable structures. In this work, we prepared a series of nanofiber membranes by electrospinning technology using hexadecyl trimethyl ammonium Bromide (CTAB) and 5-Chloro-8-hydroxyquinoline (5-Cl8Q) as antibacterial agents and polylactic acid (PLA) as substrate. The antimicrobial performance of PLA/CTAB/5-Cl8Q was the highest among the prepared materials, which inhabited S. aureus and E. coli up to 99.9% and 95.9%, respectively, and the antibacterial properties were stable. In general, PLA/CTAB/5-Cl8Q has great development potential, and it can be applied to real life as a cost-effective, biodegradable and highly antibacterial material.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Science and Technology Project of Hebei Education Department

Central Government of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3