Mechanical and Tribological Properties of CrWN/MoN Nano-Multilayer Coatings Deposited by Cathodic Arc Ion Plating

Author:

Tian Canxin1,Xiang Yanxiong1,Zou Changwei1,Yu Yunjiang1,Abudouwufu Tushagu23,Yang Bing4,Fu Dejun25

Affiliation:

1. School of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048, China

2. School of Physics and Technology, Wuhan University, Wuhan 430072, China

3. Zhuhai Tsinghua University Research Institute Innovation Center, Zhuhai 519000, China

4. School of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China

5. Wuhan University Shenzhen Research Institute, Nanshan Hitech Zone, Shenzhen 518057, China

Abstract

CrWN/MoN nano-multilayer coatings were deposited in pure N2 by multi-arc ion plating using CrW and Mo targets, with the cathode co-controlled by a permanent magnet combined with an electromagnet. The effects of the thickness modulation period on the microstructure and mechanical and tribological performance were systematically analyzed by grazing-incident X-ray diffraction (GIXRD), transmission electron microscopy (TEM), Nanoindentation, scanning electron microscope (SEM) and profilometry using a Talysurf profilometer. The local coherent interfaces and nanoscale modulation period were confirmed by TEM, while the coatings were confirmed to be composed of fcc-CrWN and hexagonal δ-MoN by GIXRD. With the increase in the modulation period, the hardness of the CrWN/MoN nano-multilayer coatings decreased, and the values of the H/E ratio and friction coefficient showed the same variation trend. At an 8.0 nm modulation period, the CrWN/MoN nano-multilayer coating showed the maximum hardness (30.2 GPa), the lowest H/E value (0.082) and an H3/E*2 value of 0.16. With the decrease in the modulation period, the average friction coefficient of the CrWN/MoN nano-multilayer coatings gradually decreased from 0.45 to 0.29, while the wear rate decreased from 4.2 × 10−7 mm3/Nm to 3.3 × 10−7 mm3/Nm.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Guangdong Province

Science and Technology Planning Project of Shenzhen Municipality

Science and Technology Project of Zhanjiang

Lingnan Normal University Scientific Research Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3