Tribological Properties and Corrosion Resistance of Porous Structure Ni-Mo/ZrO2 Alloys

Author:

Li Ning,Xu Hong,Li Xinhui,Chen Weizeng,Zheng Lijuan,Lu Lirong

Abstract

Ni-Mo-ZrO2 composite coatings were produced by pulse electrodeposition technique from alkaline electrolytes containing dispersed ZrO2 nanopowder. The structure, microhardness, corrosion properties and tribological properties of Ni-Mo-ZrO2 composites with different content of molybdenum and ZrO2 have also been examined. Structural characterization was performed using X-ray diffraction (XRD) and a scanning electron microscope (SEM). It was found that an increase in molybdate concentration in the electrolyte affects the microstructure, microhardness, corrosion properties and tribological properties of the amount of co-deposited ZrO2 nanoparticles. The incorporation of ZrO2 nanoparticles into the Ni-Mo alloy matrix positively affects the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coatings. In addition, both the coefficient of friction and the salt-water lubrication sliding wear rate of Ni-Mo-ZrO2 coatings decreased with increasing the ZrO2 content. Wear test and corrosion resistance test results indicated that the intermetallic composite had an excellent wear-resistance and corrosion resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases Ni-Mo and polarization effect of ZrO2 nanoparticles.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference29 articles.

1. Laser direct deposition Mo-Ni-ZrO2 composited alloy gradient coating;Wang;Acta Mater. Compos. Sin.,2017

2. Microstructure and electrochemical properties of the electrodeposited Ni-Mo/ZrO2 alloy coating;Li;Mater. Sci. Technol.,2011

3. Electrodeposition and characterization of Ni–Mo–ZrO 2 composite coatings

4. Preparation of Ni-ZrO2 composites via mechanochemistry processes and their catalytic properties;Kim;J. Ceram. Process. Res.,2016

5. Microwave dielectric properties of temperature stable MO-ZrO2-Ta2O5 ceramics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3