Microstructure and Corrosion Behavior of Laser Cladding FeCoNiCrBSi Based High-Entropy Alloy Coatings

Author:

Zhang Hongling,Li Wenjuan,Xu Huanhuan,Chen Liang,Zeng Junshan,Ding Zhibing,Guo WenminORCID,Liu BinORCID

Abstract

High-entropy amorphous alloys designed based on the concept of multi-principal components have the comprehensive advantages of high passivation element content and amorphous structure, and are considered as one of the promising alternative protective materials in extreme marine environments. However, based on the composition of traditional amorphous alloys, the multi-principal design significantly reduces its glass forming ability. In order to improve the glass formation ability of high-entropy amorphous alloys, this study attempts to design Fe19.6Co19.6Ni19.6Cr19.6(B13.72Si5.88)19.6Y2 alloy by microalloying on the basis of traditional FeCoNiCrBSi high-entropy amorphous alloy. The traditional Fe43.6Co6Ni17.4Cr9B17.5Si1.5Nb5 iron-based amorphous alloy was selected as the comparison material. Then, spherical alloy powders were prepared by gas atomization. The amorphous nanocrystalline composite coatings were deposited on the 304 stainless steel by laser cladding technology. The microstructure of the coatings was characterized by scanning electron microscopy and X-ray diffractometer. The corrosion behavior of laser cladding coatings in 3.5 wt.% NaCl solution were investigated in detail. The results show that the Fe43.6Co6Ni17.4Cr9B17.5Si1.5Nb5 powder is composed of FCC, Laves and boride phases. Whereas the Fe19.6Co19.6Ni19.6Cr19.6(B13.72Si5.88)19.6Y2 high-entropy amorphous alloy powder is composed of FCC and boride phases. Due to the remelting and multiple heat treatments during the preparation of the laser cladding coatings, borides were precipitated in both coatings. The microstructure of the two coatings from the bonding area with the substrate to the top layer are plane grains, dendrite, equiaxed grains and amorphous phase, respectively. Fe19.6Co19.6Ni19.6Cr19.6(B13.72Si5.88)19.6Y2 high-entropy amorphous alloy coating exhibits high corrosion potential, passivation film resistance and low corrosion current density in 3.5 wt.% NaCl solution. In addition, the passivation film formed on the coating has higher Cr content and lower defect concentration, showing more excellent corrosion resistance.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Research Foundation of Education Bureau of Hunan Province,China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3