Enhancement in Nanomechanical, Thermal, and Abrasion Properties of SiO2 Nanoparticle-Modified Epoxy Coatings

Author:

Alam Mohammad Asif,Abdus Samad Ubair,Alam Manawwer,Anis ArfatORCID,Al-Zahrani Saeed M.

Abstract

Epoxy formulations containing 1%, 3%, and 5% SiO2 nanoparticles (SNPs) were produced and applied to mild steel substrates in order to improve their thermal, nanomechanical, and abrasion resistance. Field emission scanning electron microscopy (FE-SEM) was used to analyze the dispersion of nanoparticles in the final coating samples, and Energy-dispersive X-ray spectroscopy (EDX) was used to confirm the presence of nanoparticles. Thermogravimetric analysis (TGA) was employed to measure the thermal resistance of the prepared coatings. Conventional techniques were used to measure the impact and scratch resistance. For nanomechanical testing, nanoindentation was performed using a Berkovich-type indenter. Using a taber abraser, the abrasion properties of the coatings were measured. The FE-SEM images indicated good dispersion of the nanoparticles at all three different loading levels. The scratch, impact, and hardness of coatings improved with the addition of the SNPs. Nanomechanical properties, such as hardness and elastic modulus, improved when compared to the unmodified coatings. The thermal and abrasion resistances of the coatings improved with the increase in the SNPs content of the coatings. The highest mechanical, thermal, and abrasion properties were obtained for the coatings with 5% SNP content.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3