Water Lubrication of Al-Cu Composites Reinforced by Nickel-Coated Si3N4 Particles

Author:

Peng Yanan1,Dai Qinqwen1,Huang Wei1,Wang Xiaolei1ORCID

Affiliation:

1. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

Abstract

Silicon nitride (Si3N4) particle-reinforced aluminum–copper (Al-Cu) alloy matrix composites have been prepared in our previous works and experimental result shows that they can be used as a new kind of water-lubricated materials. However, the wettability between Si3N4 ceramics and Al-Cu alloys is poor and the manufacturing process is usually carried out at a high temperature of 1100 °C. To overcome this shortcoming, a layer of nickel was deposited on the surface of Si3N4 particles, forming a core-shell structure. Thus, the interface bonding property between Si3N4 and Al-Cu alloy can be improved and the lower sintering temperature can be applied. Si3N4/Al-Cu alloy composites with different proportions of Ni-coated Si3N4 were fabricated by powder matrix metallurgy technology at 800 °C, and the water lubrication properties of the composite were investigated. The experimental results show that with the increase in the particle content (10 wt%–40 wt%), the microhardness of the composites increased first and then decreased, while the porosity increased continuously. A low friction coefficient (0.001–0.005) can be achieved for the composites with the lower particle content (10 wt%–20 wt%). The major wear mechanism changes from the mechanically dominated wear during the running-in process to the tribochemical wear at the low frictional stage.

Funder

National Key Laboratory of Science and Technology on Helicopter Transmission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3