Vapor Deposited Zeolitic Imidazolate Framework-8 Derived from Porous ZnO Thin Films

Author:

Kräuter Marianne1ORCID,Unger Katrin12,Resel Roland1ORCID,Coclite Anna Maria1ORCID

Affiliation:

1. Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria

2. Electronic Sensors, Silicon Austria Labs GmbH, 8010 Graz, Austria

Abstract

In recent years, the vapor deposition of zeolitic imidazolate framework-8 (ZIF-8) has gained high attraction due to its good scalability, conformality, and thickness control. The present study provides new fundamental insights regarding the vapor deposition of ZIF-8 from zinc oxide (ZnO). During synthesis, ZnO thin films with different percentages of open porosity (14.5%–24%) were subjected to a 2-methylimidazole vapor for different conversion times (20 min–24 h). For the first time, the impact of the porosity of ZnO thin films onto the converted ZIF-8 is investigated. Grazing incidence X-ray diffraction reveals randomly oriented crystallites of ZIF-8, which already appear after 20 min of conversion. The thickness, roughness, and average particle height of the ZIF-8 layers increase with the conversion time, reaching values up to (172 ± 20) nm, (29 ± 3) nm, and (113 ± 8) nm, respectively, for ZIF-8 obtained from ZnO with 14.5% open porosity. At long conversion times (i.e., 24 h), the results hint at greater precursor porosities resulting in lower thicknesses of ZIF-8, as the thickness, roughness, and average particle height for ZIF-8 obtained from 24%-porous ZnO show values of (132 ± 20) nm, (25 ± 3) nm and (80 ± 8) nm, respectively. Additionally, the potential of the ZIF-8 layers as a photocatalyst for the degradation of the organic dye methylene blue was studied. The ZIF-8 enhances the degradation by approximately 8% when compared to degradation without a photocatalyst.

Funder

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program

the Lead project LP-03 “Porous Materials@Work” of the Graz University of Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3