LED Light Improved by an Optical Filter to Visible Solar-Like Light with High Color Rendering

Author:

Shen Li-Siang,Wu Hsing-Yu,Hsiao Li-Jen,Shih Chih-Hsuan,Hsu Jin-Cherng

Abstract

In this study, a new, cost-effective, rapid, and easy method to produce a sunlight-like D65 light source from a typical white light-emitting diode (LED) is discussed. The novelty of this method is that the emission spectrum of a typical white LED is measured first, then the reverse spectrum is used to design and fabricate a double-sided multilayer coating filter to set in front of the typical white LED. This can be verified experimentally to improve the color-rendering index of the white LED to 95.8 at the D65 color temperature. The optical thicknesses of the multilayer film are designed at a quarter wavelength. The layer-thickness errors during the deposition process are reduced due to easy monitoring with the turning-point method. By lowering both the cost and level of technology required to produce D65 light sources, in addition to the most direct consequences of increased D65 availability and affordability, the cost and level of technology required for research that heavily utilizes D65 light sources can also be lowered in turn, especially in the fields of clinical science, medicine, and related industries.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference26 articles.

1. Suitability of fluorescent tube light sources for the Ishihara test as determined by colorimetric methods;Dain,1993

2. Evaluation of light sources for the D-15 color vision test;Hovis,1995

3. Color discrimination assessment in patients with hypothyroidism using the Farnsworth–Munsell 100 hue test

4. Colorimetry: Understanding the CIE System;Schanda,2007

5. Tunable white light source for medical applications;Blaszczak;Proc. SPIE,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3