Characterization and Growth of TiO2/ZnO on PTFE Substrates at Different Volumetric Ratios Using Chemical Bath Deposition

Author:

Elzawiei Youssif S M1,Hashim Md Roslan1ORCID,Halim Mohd Mahadi1ORCID,Abdulhameed Abdullah1

Affiliation:

1. Nano-Optoelectronics Research and Technology Laboratory (NOR), School of Physics, Universiti Sains Malaysia, Penang 11800 USM, Malaysia

Abstract

Developing non-toxic, semiconductor-doped heterojunction materials for optoelectronic applications on the surface of a flexible substrate is a viable strategy for meeting the world’s energy needs without introducing any environmental issues. In this paper, Ti:TiO2/ZnO nanocomposites were prepared by heat treatment and utilized as an active layer in UV photodetectors. First, a ZnO seed layer was deposited by radio frequency (RF) sputtering on polytetrafluoroethylene (PTFE) substrates. Then, TiO2/ZnO thin films (TFs) were successfully grown by combining volumetric mixtures of TiO2 and ZnO at the ratios of 1:7, 1:3, 3:5, and 1:1 via the chemical bath deposition (CBD) method. The morphological, elemental, and topographical analyses of the grown TFs were investigated through SESEM, EDX, and AFM spectroscopy, respectively. XRD patterns illustrated the presence of the unified (002) peak of the Ti/ZnO hexagonal wurtzite structure in all prepared samples, with intensities indicating a very strong preferential crystallinity with increasing TiO2 ratios. Enhanced diffuse reflectance curves were obtained by UV–Vis spectroscopy, with allowed indirect energy bandgaps ranging from 3.17 eV to 3.23 eV. FTIR characterization revealed wider phonon vibration ranges indicating the presence of Ti–O and Zn–O bonds. Metal–semiconductor–metal (MSM) UV photodetectors were fabricated by thermally evaporating Ag electrodes on the grown nanocomposites. The volumetric ratio of TiO2/ZnO impacted the photodetector performance, where the responsivity, photosensitivity, gain, detectivity, rise time, and decay time of 0.495 AW−1, 247.14%, 3.47, 3.68 × 108 jones, 0.63 s, and 0.99 s, respectively, were recorded at a ratio of 1:1 (TiO2:ZnO). Based on the results, the heterostructure nanocomposites grown on PTFE substrates are believed to be highly promising TF for flexible electronics.

Funder

Ministry of Higher Education Malaysia

Universiti Sains Malaysia

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of dual-band spectral response Cu2O/TiO2 heterojunction photodetector;International Conference on Optoelectronic Information and Functional Materials (OIFM 2023);2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3