Abstract
The article compares the properties of multilayer composite wear-resistant coatings of Zr–ZrN–(Zr, Mo, Al)N, Ti–TiN–(Ti, Mo, Al)N, and Cr–CrN–(Cr, Mo, Al)N. The investigation was focused on hardness, resistance to fracture during scratch tests, elemental composition, and structure of the coatings. Experiments were carried out to study the wear resistance of coated carbide tools during the turning of 1045 steel and of NiCr20TiAl heat-resistant nickel alloy. With the elemental compositions identical in the content of molybdenum (Mo) and aluminium (Al), identical thicknesses and nanolayer periods of λ, the coatings being studied demonstrated a noticeable difference in wear resistance. Both during the turning of steel and nickel-based alloy, the highest wear resistance was detected for tools with the Zr–ZrN–(Zr, Mo, Al)N coating (the tool life was 3–5 times higher than for uncoated tools). The good wear resistance of the Zr–ZrN–(Zr, Mo, Al)N coating may be related to the optimal combination of hardness and plasticity and the active formation of molybdenum oxide (MoO3) on the coating surface during the cutting, with good tribological and protective properties.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Reference70 articles.
1. Fundamentals of Machining and Machine Tools;Boothroyd,2006
2. The role of the thermal factor in the wear mechanism of ceramic tools: Part 1. Macrolevel
3. Of the Theory of Diffusion Wear
4. Nature of brittle failure of cutting tool;Loladze;CIRP Ann.-Manuf. Technol.,1975
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献